
Evolutionary multi-actions UtilityAI using Bézier curves

for racing games

Antoine Pavy, Quentin Pamart, Céline Tran

ESGI, Paris 2022

1 Introduction

This paper provides a usage of UtiltyAI for 3D racing
games.

After one year of development for our game Kart
Mania, a 3D racing game, we felt the need to add some
challenge for the players. The best way was to add an
AI that the player could race against. However, since
we expect to let the players create their own circuit and
share it to the community, we couldn’t rely on classic
neural network like a MLP. Indeed, allowing the player
such creative possibilities, would mean that we would
need a huge dataset in order to train our AI to run
smoothly on every level created. Moreover, a MLP is
quite opaque and doesn’t allow for manual tweakings
for the development team.

After some of research, we found an alternative AI
algorithm called UtilityAI, mainly known for being cre-
ated for the Sims. This algorithm could allow us to
make our AI choose its behaviour based on the useful-
ness of an action at a given state in the race, no matter
what the shape of the circuit is. We also noticed Util-
ityAI has never been used for a driving AI. That was
our opportunity to create something new in the field
of research on Artificial Intelligence. The main topic
of our SIGGRAPH poster is about how we’ve adapted
this algorithm to work for our game and how we’ve
combined it with a evolutionary algorithm to improve
its performance.

2 Approach

Racing games generally use classical Machine Learn-
ing Algorithm for AI training, but it takes a long
time to learn, which is complicated for a short term
project. UtilityAI combined with an evolutionary al-
gorithm could be a solution for having an independent
AI learning by itself. This algorithm is based on de-
termining values of usefulness. Therefore, instead of
making complex matrix products that could be quite
heavy to compute, we only need to calculate the sums
of values given to each possible action which makes
the complexity much smaller and more suited for a
real time applications. In our case, we’ve decided that
we would need to allow the AI to pick multiple actions
at the same time, which is why we’ve altered UtilityAI
to fit our needs.

3 Implementation

3.1 Bézier Curves for Circuit

Our circuits are generated using a model based on
Bézier curves. We developed a tool allowing us to
quickly and efficiently edit cubic Bézier curves. With
this tool, we can get local position and rotation of any
object projected on the circuit. We actually generate
a tangent - the local forward - and two normals for a
position on the Bézier curve - the local right and the

1



local up with cross product. With this, we can get the
exact rotation of any given position. Furthermore, we
generate a distance for a position, meaning we have a
way to easily know the position - or rank - of a car in
the race. The tool also has a way to compute a closest
position on a curve from any world position, allowing
to compare for example the car rotation with the road
direction (using normals and tangent of the computed
position).

3.2 Curvature of the Road

The main data used for our AI’s behaviour is the cur-
vature of the road. Indeed, it needs to know in which
direction the road is going in order to turn properly.

In order to get this data, we need to get the posi-
tion of the vehicle on the curve. The AI looks for the
orientation of the circuit a certain amount of meters
ahead, in order to anticipate the curve and turn a lit-
tle bit earlier. After getting this position, we project
it a few meters ahead once more in order to get two
separate positions on the circuit.

Figure 1: Two points on the circuit used to get the
curvature

The two red points represents the previously described
positions on curve, and their arrows are their forward
vector. By doing the dot product between the right
vector of the first point, and the forward vector of the
second point, we obtain a value between [-1;1], nega-
tive when the road is turning left, positive when it’s
turning to the right.

4 Evaluating Functions

In order to make our behaviour tend to a certain value
based on the data that it receives, we are using custom
functions to make the AI’s decisions more precise. An
action could tend to be useful only when a given value
is very high (exponential function) or even when it is
still small (logarithmic function). Using these with a
coefficient is the core mechanism of UtilityAI.

5 Improve with Evolutionary
Algorithm

Even if the AI can already do a decent race on its
own, in order to get better results, you need to use a

method to make your parameters more precise. In our
case, we used an evolutionary algorithm to tweak the
coefficients of our UtilityAI. As the AI is already par-
tially trained by us, the learning phase isn’t too long,
and results are visible quickly.

In order to link UtilityAI with the evolutionary al-
gorithm, we created a genome. This genome contains
the coefficients applied to all the data of each action.

Then, the genome is modified by crossing the
genomes of two parents picked among the previous AIs
that performed the best and then mutated, in order
to create a brand new population of AIs, all different
from each other. In our case, we rank each generation
of a population by sorting them by the distance it has
traveled.

6 Future works

While our algorithm is quite robust and effective, we
have some improvements tracks we will work on:

• Put our evaluation functions or other parameters
(distance check for example as described in 3.2)
in the genome, in order to let the evolutionary
algorithm tweak it for us.

• As our algorithm is made with Unity, we have
some ideas for improving performances by us-
ing their Jobs System and Burst Compiler. In
fact our simulation for evolutionary algorithm is
quite slow, with a quite small amount of karts, so
this would allow us to simulate faster and with a
bigger population to have a more homogeneous
result.

• Currently our IAs try to follow the center of the
road as much as possible. An improvement would
be to try to stay on the apex of the turn to have
the shortest possible path.

References

[Nor99] John Norstad. “An introduction to util-
ity theory”. In: Unpublished manuscript
at http://homepage. mac. com/j. norstad
(1999).

[WL12] Jung-Ying Wang and Yong-Bin Lin. “Game
ai: Simulating car racing game by applying
pathfinding algorithms”. In: International
Journal of Machine Learning and Comput-
ing 2.1 (2012), p. 13.

[TC14] Blair Peter Trusler and Christopher Child.
“Implementing Racing AI using Q-Learning
and Steering Behaviours”. In: Conference
on Simulation and AI in Computer Games.
Vol. 11. 2014, pp. 09–2014.

2


	Introduction
	Approach
	Implementation
	Bézier Curves for Circuit
	Curvature of the Road

	Evaluating Functions
	Improve with Evolutionary Algorithm
	Future works

